\section{On a Class of Three-Variable Inequalities}%20
\markboth{Articles}{On a Class of Three-Variable Inequalities}\vspace{4.2cm}
\subsection{Theorem}
Let $a,b,c$ be real numbers such that $a+b+c=1$.By the AM-GM inequality,$$ab+bc+ca\le \ds\f{1}{3},$$therefore setting $ab+bc+ca=\ds\f{1-a^2}{3}$ $(q\ge 0)$,we will find the maximum and minimum values of $abc$ in terms of $q$.If $q=0$, then $a=b=c=\ds\f{1}{3}$,therefore $abc=\ds\f{1}{27}$.If $q\ne 0$, then$(a-b)^2+(b-c)^2+(c-a)^2>0$.Consider the function$f(x)=(x-a)(x-b)(x-c)=x^3-x^2+\ds\f{1-q^2}{3}x-abc$.We have$$f'(x)=3x^2-2x+\ds\f{1-q^2}{3}$$with zeros $x_1=\ds\f{1+q}{3}$ and $x_2=\ds\f{1-q}{3}$.We can see that$f'(x)<0$ for $x_2<x<x_1$ and $f'(x)>0$ for $x<x_2$ or $x>x_1$.Furthermore, $f(x)$ has three zeros: $a,b,c$.Then$$f\left(\ds\f{1-q}{3}\right)=\ds\f{(1-q)^2(1+2q)}{27}-abc\ge 0$$and$$f\left(\ds\f{1+q}{3}\right)=\ds\f{(1+q)^2(1-2q)}{27}-abc\le 0.$$Hence$$\ds\f{(1+q)^2(1-2q)}{27}\le abc\le \ds\f{(1-q)^2(1+2q)}{27}$$and we obtain the following theorem.{\bf Theorem 1.}
{\it If $a,b,c,$ are arbitrary real numbers such that $a+b+c=1$,and if $ab+bc+ca=\ds\f{1-q^2}{3}$ $(q\ge 0)$, then holds$$\ds\f{(1+q)^2(1-2q)}{27}\le abc\le \ds\f{(1-q)^2(1+2q)}{27}.$$}
Or, more generally,
{\bf Theorem 2.}
{\it Let $a,b,c$ be real numbers such that $a+b+c = p$.If $ab+bc+ca =\ds\f{p^2-q^2}{3}$ $(q\ge 0)$ and $r=abc$, then
$$\ds\f{(p+q)^2(p-2q)}{27}\le r\le \ds\f{(p-q)^2(p+2q)}{27}.$$This is a powerful tool because the equality holds if and only if
$$(a-b)(b-c)(c-a)=0.$$Here are some identities which we can use with this theorem$$a^2+b^2+c^2=\ds\f{p^2+2q^2}{3}$$$$a^3+b^3+c^3=pq^2+3r$$$$ab(a+b)+bc(b+c)+ca(c+a)=\ds\f{p(p^2-q^2)}{3}-3r$$$$(a+b)(b+c)(c+a)=\ov{p(p^2-q^2)}{3}-r$$$$a^2b^2+b^2c^2+c^2a^2=\ds\f{(p^2-q^2)^2}{9}-2pr$$$$ab(a^2+b^2)+bc(b^2+c^2)+ca(c^2+a^2)=\ds\f{(p^2+2q^2)(p^2-q^2)}{9}-pr$$$$a^4+b^4+c^4=\ds\f{-p^4+8p^2q^2+2q^4}{9}+4pr.$$}
{\bf Remark 1.}
There is also a geometric proof of this result.By Viete's formulas we have
$$(x-a)(x-b)(x-c)=x^2-px^2+\ds\f{1}{3}(p^2-q^2)x-r.$$As we increase $r$ we lower the graph of
$y=x^3-px^2+\ds\f{1}{3}(p^2-q^2)x-r$.The largest and smallest values of $r$ for which this polynomial will have three realroots will be at the points where it has double roots, with the maximum of $r$corresponding to the case where the smaller root is the double root.In this case we find the double root at $(p\mp q)/3$ and the single root at $(p\pm 2q)/3$with the upper sign corresponding to the maximum of $r$ and the lower sign the minimum. {\bf Remark 2.}This result is sharp in the following sense.Suppose we are given real numbers $p,q,r$ with $q\ge 0$ satisfying this inequality.
Then there exist real numbers $a,b,c$ such that $a + b + c = p$,$ab+bc+ca=\ds\f{p^2-q^2}{3}$, and $abc=r$.{\bf Remark 3.}
If $a,b,c\ge 0$ then we get the additional restrictions that $r\ge 0$and $p\ge q$.This remark is used in the last application so it might be worth making
even if you ignore the others.Alternately, one can state it with all threeinequalities strict.For a monic cubic polynomial $p(x)=(x-a)(x-b)(x-c)$the discriminant of the polynomial $p$ is$D=(a-b)^2(b-c)^2(c-a)^2$.This is a symmetric polynomial in the roots of $p$, therefore it can be written as apolynomial in the coefficients of $p$.In the special case above where$p(x)=x^3-px^2+\ds\f{1}{3}(p^2-q^2)x-r$one can compute that$$D=27\left(r-\ds\f{(p+q)^2(p-2q)}{3}\right)\left(\ds\f{(p-q)^2(p+2q)}{3}-r\right).$$With this formula Theorem 2 and its converse combine to give the well known
fact that the discriminant is nonnegative if and only if p has only real roots.\subsection{Applications}
{\bf Problem 1.}{\it Let $a,b,c$ be positive real numbers such that $a+b+c = 1$.Prove that$$\ds\f{1}{a}+\ds\f{1}{b}+\ds\f{1}{c}+48(ab+bc+ca)\ge 25.$$}
{\bf Solution.}
We can easily check that $q\in [0,1]$, and by using Theorem 2,\begin{align*}{\rm LHS}& =\ds\f{1-q^2}{3r}+16(1-q^2)\ge \ds\f{9(1+q)}{(1-q)(1+2q)}+16(1-q^2)\\& =\ds\f{2q^2(4q-1)^2}{(1-q)(1+2q)}+25\ge 25.\end{align*}The inequality is proved.
Equality holds if and only if $a = b = c = \ds\f{1}{3}$or $a=\ds\f{1}{2}$, $b=c=\ds\f{1}{4}$and their permutations.{\bf Problem 2.}
(Vietnam 2002).{\it Let $a,b,c$ be real numbers such that $a^2+b^2+c^2=9$.Prove that$$2(a+b+c)-abc\le 10.$$}
{\bf Solution.}
The condition can be written as$p^2+2q^2=27$.Using our theorem, we have$${\rm LHS}=2p-r\le 2p-\ds\f{(p+q)^2(p-2q)}{27}=\ds\f{p(5q^2+27)+2q^3}{27}.$$We need to prove that
$$p(5q^2+27)\le 270-2q^3.$$This follows from
$$(270-2q^3)^2\ge p^2(5q^2+27)^2,$$or, equivalently,$$27(q-3)^2(2q^4+12q^3+49q^2+146q+219)\ge 0.$$The inequality is proved.
Equality holds if and only if $a = b = 2$, $c = -1$ andtheir permutations.{\bf Problem 3.}
(Vo Quoc Ba Can).{\it For all positive real numbers $a,b,c$,$$\ds\f{a+b}{c}+\ds\f{b+c}{a}+\ds\f{c+a}{b}+11\sqrt {\ds\f{ab+bc+ca}{a^2+b^2+c^2}}\ge 17.$$}
{\bf Solution.}
Because the inequality is homogeneous, without loss of generality,assume that $p = 1$.Then $q\in [0,1]$ and the inequality can be written as$$\ds\f{1-q^2}{3r}+11\sqrt {\ds\f{1-q^2}{1+2q^2}}\ge 20.$$By our theorem, it suffices to prove
$$11\sqrt {\ds\f{1-q^2}{1+2q^2}}\ge 20-\ds\f{9(1+q)}{(1-q)(1+2q)}=\ds\f{-40q^2+11q+11}{(1-q)(1+2q)}.$$If $-40q^2+11q+11\le 0$,
or$q\ge \ds\f{11+3\sqrt {209}}{80}$,it is trivial.If$q\le \ds\f{11+3\sqrt {209}}{80}<\ds\f{2}{3}$,$$\ds\f{121(1-q^2)}{1+2q^2}-\ds\f{(-40q^2+11q+11)^2}{(1-q)^2(1+2q)^2}=\ds\f{3q^2(11-110q+255q^2+748q^3-1228q^4)}{(1+2q^2)(1-q)^2(1+2q)^2}.$$Note that the only positive real root of
$11-110q+255q^2+748q^3-1228q^4$is at $0.748037\ldots >\ds\f{11+3\sqrt {209}}{80}$and therefore the numerator is positive for $q\le \ds\f{11+3\sqrt {209}}{80}$.The inequality is proved.Equality occurs if and only if $a = b = c$.{\bf Problem 4.}
(Vietnam TST 1996).{\it Prove that for any $a,b,c\in \mathbb{R}$,$$(a+b)^4+(b+c)^4+(c+a)^4\ge \ds\f{4}{7}(a^4+b^4+c^4).$$}
{\bf Solution.}
If $p = 0$ the inequality is trivial, so we will consider the case $p\ne 0$.Without loss of generality, assume that $p = 1$.The inequality becomes$$q^4+4q^2+10-108r\ge 0$$and by our theorem\begin{align*}q^4+4q^2+10-108r& \ge q^4+4q^2+10-4(1-q)^2(1+2q)\\& =q^2(q-4)^2+6\ge 0.\end{align*} The inequality is proved.Equality holds only for $a = b = c = 0$.{\bf Problem 5.}
(Pham Huu Duc, MR1/2007).{\it Prove that for any positive real numbers $a,b,c$,$$\sqrt {\ds\f{b+c}{a}}+\sqrt {\ds\f{c+a}{b}}+\sqrt {\ds\f{a+b}{c}}\ge \sqrt {6\cdot \ds\f{a+b+c}{\sqrt [3]{abc}}}.$$}
{\bf Solution.}
By H\"older's inequality,$$\left(\sum_{cyc}\sqrt {\ds\f{b+c}{a}}\right)^2\left(\sum_{cyc}\ds\f{1}{a^2(b+c)}\right)\ge \left(\sum_{cyc}\ds\f{1}{a}\right)^3.$$ It suffices to prove that$$\left(\sum_{cyc}\ds\f{1}{a}\right)^3\ge \ds\f{6(a+b+c)}{\sqrt [3]{abc}}\sum_{cyc}\ds\f{1}{a^2(b+c)}.$$Let $x=\ds\f{1}{a}$, $y=\ds\f{1}{b}$, $z=\ds\f{1}{c}$,
then the inequality becomes$$(x+y+z)^3\ge 6\sqrt [3]{xyz}(xy+yz+zx)\sum_{cyc}\ds\f{x}{y+z},$$or$$(x+y+z)^3\ge \ds\f{6\sqrt [3]{xyz}(xy+yz+zx)}{(x+y)(y+z)(z+x)}((x+y+z)^3-2(x+y+z)(xy+yz+zx)+3xyz).$$By the AM-GM inequality,
$$(x+y)(y+z)(z+x)=(x+y+z)(xy+yz+zx)-xyz\ge \ds\f{8}{9}(x+y+z)(xy+yz+zx).$$It remains to prove that
$$4(x+y+z)^4\ge 27\sqrt [3]{xyz}((x+y+z)^3-2(x+y+z)(xy+yz+zx)+3xyz).$$Setting $p=x+y+z$, $xy+yz+zx=\ds\f{p^2-q^2}{3}$ $(p\ge q\ge 0)$,
the inequality becomes$$4p^4\ge 9\sqrt [3]{xyz}(p^3+2pq^2+9xyz).$$Applying our theorem, it suffices to prove that
$$4p^4\ge 9\sqrt [3]{\ds\f{(p-q)^2(p+2q)}{27}}\left(p^3+2pq^2+\ds\f{(p-q)^2(p+2q)}{3}\right)$$$$4p^4\ge \sqrt [3]{(p-q)^2(p+2q)}(3p^3+6pq^2+(p-q)^2(p+2q)).$$Setting $u=\sqrt [3]{\ds\f{p-q}{p+2q}}\le 1$,
the inequality is equivalent to$$4(2u^3+1)^4\ge 27u^2(4u^9+5u^6+2u^3+1),$$or$$f(u)=\ds\f{(2u^3+1)^4}{u^2(4u^9+5u^6+2u^3+1)}\ge \ds\f{27}{4}.$$We have
$$f'(u)=\ds\f{2(2u^3+1)^3(u^3-1)(2u^3-1)(2u^6+2u^3-1)}{u^3(u^3+1)^2(4u^6+u^3+1)^2}$$and$$f'(u)=0\Lr u=\sqrt [3]{\ds\f{\sqrt 3-1}{2}},\ds\f{1}{\sqrt [3]{2}},1.$$Now, we can easily verify that$$f(u)\ge \min\left\{f\left(\sqrt [3]{\ds\f{\sqrt 3-1}{2}}\right),f(1)\right\}=\ds\f{27}{4},$$which is true.The inequality is proved.Equality holds if and only if $a = b = c$.{\bf Problem 6.}
(Darij Grinberg).{\it If $a,b,c\ge 0$, then$$a^2+b^2+c^2+2abc+1\ge 2(ab+bc+ca).$$}
{\bf Solution.}
Write the inequality as$$6r+3+4q^2-p^2\ge 0.$$If $2q\ge p$, it is trivial.If $p\ge 2q$, using the theorem, it suffices to prove that$$\ds\f{2(p-2q)(p+q)^2}{9}+3+4q^2-p^2\ge 0,$$or$$(p-3)^2(2p+3)\ge 2q^2(2q+3p-18).$$If $2p\le 9$, we have $2q+3p\le 4p\le 18$,
therefore the inequality is true.If $2p\ge 9$, we have$$2q^2(2q+3p-18)\le 4q^2(2p-9)\le p^2(2p-9)$$$$=(p-3)^2(2p+3)-27<(p-3)^2(2p+3).$$The inequality is proved.
Equality holds if and only if $a = b = c = 1$. {\bf Problem 7.}(Schur's inequality).{\it For all nonnegative real numbers $a,b,c$,$$a^3+b^3+c^3+3abc\ge ab(a+b)+bc(b+c)+ca(c+a).$$}
{\bf Solution.}
Because the inequality is homogeneous, we can assume that$a+b+c=1$.Then $q\in [0,1]$ and the inequality is equivalent to$$27r+4q^2-1\ge 0.$$If $q\ge \ds\f{1}{2}$, it is trivial.
If $q\le \ds\f{1}{2}$,by the theorem we need to prove that$$(1+q)^2(1-2q)+4q^2-1\ge 0,$$or$$q^2(1-2q)\ge 0,$$which is true.Equality holds if and only if $a = b = c$ or $a = b$, $c = 0$ and their permutations.{\bf Problem 8.}
(Pham Huu Duc).{\it For all positive real numbers $a,b,c$,$$\ds\f{1}{a^2+bc}+\ds\f{1}{b^2+ca}+\ds\f{1}{c^2+ab}\le \ds\f{(a+b+c)^2}{3(ab+bc+ca)}\left(\ds\f{1}{a^2+b^2}+\ds\f{1}{b^2+c^2}+\ds\f{1}{c^2+a^2}\right).$$}
{\bf Solution.}
Because the inequality is homogeneous, we may assume that $p=1$.Then $q\in [0,1]$,and by the AM-GM and Schur's inequalities, we have$$\ds\f{(1-q^2)^2}{9}\ge 3r\ge \max\left\{0,\ds\f{1-4q^2}{9}\right\}.$$After expanding, we can rewrite the given inequality as$$f(r)=-486(9-q^2)r^3+27(q^6+64q^4-35q^2+24)r^2$$$$+9(4q^2-1)(11q^4-4q^2+2)r+q^2(1-q^2)^3(2q^4+8q^2-1)\ge 0.$$We have
$$f'(r)=9-162(9-q^2)r^2+6(q^6+64q^4-35q^2+24)r+(4q^2-1)(11q^4-4q^2+2)$$$$f''(r)=54(-54(9-q^2)r+q^6+64q^4-35q^2+24)$$$$\ge 54(-2(1-q^2)^2(9-q^2)+q^6+64q^4-35q^2+24)=162(q^6+14q^4+q^2+2)>0.$$Hence $f'(r)$ is an increasing function.
Now, if $1\le 2q$, then$$f'(r)\ge f'(0)=9(4q^2-1)(11q^4-4q^2+2)\ge 0.$$If $1\ge 2q$, then
$$f'(r)\ge f'\left(\ds\f{1-4q^2}{27}\right)=(1-4q^2)(q^2+2)(2q^4+17q^2+6)\ge 0.$$In each case, $f(r)$ is an increasing function.
If $1\le 2q$, then$$f(r)\ge f(0)=q^2(1-q^2)^3(2q^4+8q^2-1)\ge 0,$$and we are done.If $1\ge 2q$, by our theorem,$$f(r)\ge f\left(\ds\f{(1+q)^2(1-2q)}{27}\right)$$$$=\ds\f{1}{81}q^2(2-q)(q+1)^2(6q^3+4q^2-7q+4)(5q^2-2q+2)^2\ge 0.$$The proof is complete.
Equality holds if and only if $a = b = c$.{\bf Problem 9.}
(Nguyen Anh Tuan).{\it Let $x,y,z$ be positive real numbers such that$xy + yz + zx + xyz = 4$.Prove that$$\ds\f{x+y+z}{xy+yz+zx}\le 1+\ds\f{1}{48}((x-y)^2+(y-z)^2+(z-x)^2).$$}
{\bf Solution.}
Since $x,y,z>0$ and $xy+yz+zx+xyz=4$, there are $a,b,c>0$ such that$x=\ds\f{2a}{b+c}$, $y=\ds\f{2b}{c+a}$, $z=\ds\f{2c}{a+b}$.The inequality becomes$$P(a,b,c)=\ds\f{(a+b+c)^2\ds\sum_{cyc}(a^2-b^2)^2}{(a+b)^2(b+c)^2(c+a)^2}-\ds\f{6\ds\sum_{cyc}a(a+b)(a+c)}{\ds\sum_{cyc}ab(a+b)}+12\ge 0.$$ Because the inequality is homogeneous we can assume that $p = 1$.Then$q\in [0,1]$,and after some computations, we can write the inequality as$$f(r)=729r^3+27(22q^2-1)r^2+27(6q^4-4q^2+1)r+(q^2-1)(13q^4-5q^2+1)\le 0.$$We have
$$f'(r)=27(r(81r+44q^2-2)+6q^4-4q^2+1).$$By Schur's inequality,
$$81r+44q^2-2\ge 3(1-4q^2)+44q^2-2=1+32q^2>0.$$Hence $f'(r)\ge 0$, and $f(r)$ is an increasing function.
Then by our theorem,$$f(r)\!\le\! f\left(\ds\f{(1-q)^2(1+2q)}{27}\right)=\ds\f{2}{27}q^2(q-1)(q+2)^2(4q^4+14q^3+15q^2-7q+1)\!\le 0.$$The inequality is proved.
Equality holds if and only if $x = y = z$.{\bf Problem 10.}
(Nguyen Anh Tuan).{\it For all nonnegative real numbers $a,b,c$,$$\sqrt {(a^2-ab+b^2)(b^2-bc+c^2)}+\sqrt {(b^2-bc+c^2)(c^2-ca+a^2)}$$$$+\sqrt {(c^2-ca+a^2)(a^2-ab+b^2)}\ge a^2+b^2+c^2.$$}
{\bf Solution.}
After squaring both sides, we can rewrite the inequality as$$2\sqrt {\ds\prod_{cyc}(a^2-ab+b^2)}\left(\sum_{cyc}\sqrt {a^2-ab+b^2}\right)\ge \left(\sum_{cyc}ab\right)\left(\sum_{cyc}a^2\right)-\sum_{cyc}a^2b^2.$$By the AM-GM inequality,
$$\sqrt {a^2-ab+b^2}\ge \ds\f{1}{2}(a+b),\\sqrt {b^2-bc+c^2}\ge \ds\f{1}{2}(b+c),\\sqrt {c^2-ca+a^2}\ge \ds\f{1}{2}(c+a).$$It suffices to prove that
$$2\sqrt {\ds\prod_{cyc}(a^2-ab+b^2)}\left(\sum_{cyc}a\right)\ge \left(\sum_{cyc}ab\right)\left(\sum_{cyc}a^2\right)-\sum_{cyc}a^2b^2.$$ Because this inequality is homogeneous, we can assume $p = 1$.Then $q\in [0,1]$and the inequality is equivalent to$$2\sqrt {-72r^2+3(1-10q^2)r+q^2(1-q^2)^2}\ge 6r+q^2(1-q^2),$$or$$f(r)=324r^2-12r(q^4-11q^2+1)-q^2(4-q^2)(1-q^2)^2\le 0.$$It is not difficult to verify that $f(r)$ is a convex function, then by our theorem,
$$f(r)\le \max\left\{f(0),f\left(\ds\f{(1-q)^2(1+2q)}{27}\right)\right\}.$$Furthermore,
$$f(0)=-q^2(4-q^2)(1-q^2)^2\le 0$$$$f\left(\ds\f{(1-q)^2(1+2q)}{27}\right)=\ds\f{1}{9}q^2(q-1)^3(q+2)(9q^2+q+2)\le 0.$$Our proof is complete.
Equality holds if and only if $a = b = c$ or $a=t\ge 0$,$b = c = 0$, and their permutations.\bigskip
\hfill{\Large Vo Quoc Ba Can, Vietnam}%%%%%%%